Antibiofilm Activity and Chemical Profiling of Biomolecule Extracts from Marine Sediment Bacteria

Authors

DOI:

https://doi.org/10.5281/zenodo.15255183

Keywords:

Antibiofilm, biomolecule extracts, chemical profiles, marine bacteria, microfouling, minimum inhibitory concentration

Abstract

Some of the secondary metabolites in the marine ecosystem control the adhesion of microfouling microorganisms to surfaces, thereby exhibiting antibiofilm properties. The main objective of this research was to understand the antibiofilm and antibacterial activity of biomolecule extracts of bacteria from marine sediments. Each complex and pure biomolecule was evaluated for inhibition effects against two marine biofilm bacteria using the antibiofilm activity assay. The maximum activity of the biomolecules in preventing bacterial adhesion was determined to range between 68.59 percent and 91.84 percent for Pseudoalteromonas agarivorans and between 15 percent and 65.68 percent for Exiguobacterium homiense. Additionally, the antibacterial activity of biomolecule extracts against four marine biofilm bacteria was tested by the minimum inhibitory concentration method. The strongest minimum inhibitory activity of pure extract (0.78 mg/mL) from Bacillus simplex was recorded against Alteromonas genoviensis. Research has also focused on the determination of compounds such as alkaloids, phenolics and flavonoids in the structure of biomolecular extracts using spectrophotometric analysis. It was concluded that the pure biomolecules isolated from sediment bacteria are predominantly composed of alkaloids. These novel microbial biomolecule extracts could be used as sources to produce antibiofilm and antifouling products.

References

Abdulrahman, I., Jamal, M. T., Pugazhendi, A., Dhavamani, J., & Satheesh, S. (2022). Antibiofilm activity of secondary metabolites from bacterial endophytes of Red Sea soft corals. International Biodeterioration & Biodegradation, 173, 105462. https://doi.org/10.1016/j.ibiod.2022.105462

Adnan, M., Alshammari, E., Patel, M., Ashraf, S. A., Khan, S., & Hadi, S. (2018). Significance and potential of marine microbial natural bioactive compounds against biofilms/biofouling: necessity for green chemistry. Peer J- Life and Environment, 6, e5049. https://doi.org/10.7717/peerj.5049

Aguila-Ramírez, R. N., Hern´andez-Guerrero, C. J., Gonz´alez-Acosta, B., Id-Daoud, G., Hewitt, S., Pope, J., & Hellio, C. (2014). Antifouling activity of symbiotic bacteria from sponge Aplysina gerardogreeni. International Biodeterioration & Biodegradation, 90, 64–70. https://doi.org/10.1016/j.ibiod.2014.02.003

Andryukov, B., Mikhailov, V. & Besednova, N. (2019). The biotechnological potential of secondary metabolites from marine bacteria. Journal of Marine Science and Engineering, 7(6), 176. https://doi.org/10.3390/jmse7060176

Aykin, E., Omuzbuken, B. & Kacar, A. (2019). Microfouling bacteria and the use of enzymes in eco-friendly antifouling technology. Journal of Coating Technology and Research, 16(3), 847–856. https://doi.org/10.1007/s11998-018-00161-7

Baruzzi, F., Quintieri, L., Morea, M. & Caputo, L. (2011). Antimicrobial compounds produced by Bacillus sp. and applications in food science against microbial pathogens. Communication Current Research in Technology Advance, 2, 1102–1111.

Bekiari, V., Nikolaou, K., Koromilas, N., Lainioti, G., Avramidis, P., Hotos, G., Kallitsis, J. K. & Bokias, G. (2015). Release of polymeric biocides from synthetic matrices for marine biofouling applications. Agriculture and Agricultural Science Procedia, 4, 445–450. https://doi.org/10.1016/j.aaspro.2015.03.051

Ben Khedher, S., Kamoun, A., Aaoua, S. & Zouari, N. (2011). Improvement of Bacillus thuringiensis bioinsecticide production by sporeless and sporulating strains using response surface methodology. New Biotechnology, 28(6), 705–712. https://doi.org/10.1016/j.nbt.2011.01.008

Böhringer, N., Fisch, K. M., Schillo, D., Bara, R., Hertzer, C., Grein, F., Eisenbarth, J.-H., Kaligis, F., Schneider, T., Wagele, H., König, G. M. & Schäberle, T. F. (2017). Antimicrobial potential of bacteria associated with marine sea slugs from North Sulawesi, Indonesia. Frontiers in Microbiology, 8, 1092. https://doi.org/10.3389/fmicb.2017.01092

Cao, S., Wang, J., Chen, H., & Chen, D. (2011). Progress of marine biofouling and antifouling technologies. Chinese Science Bulletin, 56(7), 598–612. https://doi.org/10.1007/s11434-010-4158-4

Callow, J. A., & Callow, M. E. (2011). Trends in the development of environmentally friendly fouling-resistant marine coatings. Nature Communications, 2(1), 244. https://doi.org/10.1038/ncomms1251

Caruso, G. (2020). Microbial colonization in marine environments: overview of current knowledge and emerging research topics. Journal of Marine Science and Engineering, 8(2), 78. https://doi.org/10.3390/jmse8020078

Cavalcanti, G. S., Alker, A. T., Delherbe, N., Malter, K. E., & Shikuma, N. J. (2020). The influence of bacteria on animal metamorphosis. Annual Review of Microbiology, 74,137–158. https://doi.org/10.1146/annurev-micro-011320-012753

Chen, F., Gao, Y., Chen, X., Yu, Z. & Li, X. (2013). Quorum quenching enzymes and their application in degrading signal molecules to block quorum sensing-dependent infection. International Journal of Molecular Sciences, 14(9), 17477–17500. https://doi.org/10.3390/ijms140917477

Chen, L., Hu, J. S., Xu, J. L., Shao, C. L. & Wang, G. Y. (2018). Biological and chemical diversity of ascidian-associated microorganisms. Marine Drugs, 16(10), 362. https://doi.org/10.3390/md16100362

Coasta, G. A., Rossatto, F. C. P., Medeiros, A. W., Correa, A. P. F., Brandelli, A., Frazzon, A. P. G. & Motta, A. D. S. (2018). Evaluation antimicrobial and antibiofilm activity of the antimicrobial peptide P34 against Staphylococcus aureus and Enterococcus faecalis. The Annals of the Brazilian Academy of Sciences. 90(1), 73–84. https://doi.org/10.1590/0001-3765201820160131

Choudhary, A., Naughton, L. M., Montánchez, I., Dobson, A. D. W. & Rai, D. K. (2017). Current status and future prospects of marine natural products (MNPs) as antimicrobials. Marine Drugs, 15, 272. https://doi.org/10.3390/md15090272

Ciriminna, R., Bright, F. V., & Pagliaro, M. (2015). Ecofriendly antifouling marine coatings. ACS Sustainable Chemistry & Engineering, 3(4), 559–565. https://doi.org/10.1021/sc500845n

Dang, H., & Lovell, C. R. (2016). Microbial surface colonization and biofilm development in marine environments. Microbiology and Molecular Biololgy Reviews, 80(1), 91–138. https://doi.org/10.1128/MMBR.00037-15

De Carvalho, C. C. C. R. (2018). Marine Biofilms: A successful microbial strategy with economic implications. Frontiers in Marine Science, 5, 126. https://doi.org/10.3389/fmars.2018.00126

De Carvalho, C. C. C. R., & Fernandes, P. (2010). Production of metabolites as bacterial responses to the marine environment. Marine Drugs, 8, 705–727. https://doi.org/10.3390/md8030705

De Rop, A.-S.; Rombaut, J.; Willems, T.; De Graeve, M.; Vanhaecke, L.; Hulpiau, P.; de Maeseneire, S. L., de Mol, M. L. & Soetaert, W. K. (2022). Novel alkaloids from marine Actinobacteria: discovery and characterization. Marine Drugs, 20, 6. https://doi.org/10.3390/md20010006

Engel, S., Jensen, P. R., & Fenical, W. (2002). Chemical ecology of marine microbial defense. Journal of Chemical Ecology, 28, 1971–1985. https://doi.org/10.1023/a:1020793726898

Fusetani N. (2004). Biofouling and antifouling. Natural Product Reports, 21(1), 94–104. https://doi.org/10.1039/b302231p

Gallimore, W. (2017). Marine metabolites: oceans of opportunity. In Pharmacognosy (pp. 377-400). Academic Press.

Ganapiriya, V., Maharajan, A., & Kumarasamy, P. (2012). Antifouling effect of bioactive compounds from marine sponge Acanthella elongata and different species of bacterial film on larval attachment of Balanus amphitrite (Cirripedia, Crustacea). Brazilian Archives of Biology and Technology, 55(3), 395–402. https://doi.org/10.1590/s1516-89132012000300010

Giugliano, R., Della Sala, G., Buonocore, C., Zannella, C., Tedesco, P., Palma Esposito, F., Ragozzino, C., Chianese, A., Morone, M. V., Mazzella, V., Nunez-Pons, L., Folliero V., Franci, G., De Filippis, A., Galdiero, M. & de Pascale, D. (2023). New Imidazolium Alkaloids with Broad Spectrum of Action from the Marine Bacterium Shewanella aquimarina. Pharmaceutics, 15(8), 2139. https://doi.org/10.3390/pharmaceutics15082139

Habbu, P., Warad, V., Shastri, R., Madagundi, S. & Kulkarni, V. H. (2016). Antimicrobial metabolites from marine microorganisms. Chinese Journal of Natural Medicines, 14(2), 0101-0116. https://doi.org/10.1016/S1875-5364(16)60003-1

Hamdache, A., Azarken, R., Lamarti, A., Aleu, J. & Collado, I. G. (2011). Non-peptide metabolites from the genus Bacillus. Journal of Natural Products, 74(4), 893–899. https://doi.org/10.1021/np100853e

Holmström, C., & Kjelleberg, S. (1999). Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiology Ecology, 30(4), 285–293. https://doi.org/10.1111/j.1574-6941.1999.tb00656.x

Iorhemen, O. T., Hamza, R. A., & Tay, J. H. (2016). Membrane bioreactor (MBR) technology for wastewater treatment and reclamation: membrane fouling. Membranes, 6(2), 33. https://doi.org/10.3390/membranes6020033

Kacar, A., Kocyigit, A., Ozdemir, G. & Cihangir, B. (2009). The development of biofilm bacteria on panels coated by different antifouling paints in the marinas. Fresenius Environmental Bulletin, 18, 2004-2012.

Kacar, A., Avunduk, S., Omuzbuken, B. & Aykin, E. (2018). Biocidal activities of a triterpenoid saponin and flavonoid extracts from the Erica manipuliflora salisb. against microfouling bacteria. International Journal of Agriculture, Forestry and Life Science, 2(2), 40-46.

Khandeparker, L., Chandrashekar Anil, A., & Raghukumar, S. (2006). Relevance of biofilm bacteria in modulating the larval metamorphosis of Balanus amphitrite. FEMS Microbiology Ecology, 58(3), 425–438. https://doi.org/10.1111/j.1574-6941.2006.00177.x

Khalid, S. J., Ain, Q., Khan, S. J., Jalil, A., Siddiqui, M. F., Ahmad, T., & Adnan, F. (2022). Targeting Acyl Homoserine Lactones (AHLs) by the quorum quenching bacterial strains to control biofilm formation in Pseudomonas aeruginosa. Saudi Journal of Biological Sciences, 29(3), 1673-1682. https://doi.org/10.1016/j.sjbs.2021.10.064

Lade, H., Paul, D., & Kweon, J. H. (2014). Quorum quenching mediated approaches for control of membrane biofouling. International Journal of Biological Sciences, 10(5), 550–565. https://doi.org/10.7150/ijbs.9028

Le Norcy, T., Niemann, H., Proksch, P., Linossier, I., Vallée-Réhel, K., Hellio, C. & Fay F. (2017). Anti-Biofilm effect of biodegradable coatings based on hemibastadin derivative in marine environment. International Journal of Molecular Sciences, 18(7), pp.1520. https://doi.org/10.3390/ijms18071520

Leroy, C., Delbarre, C., Ghillebaert, F., Compere, C. & Combes, D. (2008) Effects of commercial enzymes on the adhesion of a marine biofilm-forming bacterium. Biofouling, 24(1) 11–22. https://doi.org/10.1080/08927010701784912

Mondol, M. A. M., Shin, H. J. & Islam, M. T. (2013). Diversity of secondary metabolites from marine Bacillus species: chemistry and biological activity. Marine Drugs, 11, 2846–2872.

Muzychka, L. V., Humeniuk, N. I., Boiko, I. O., Vrynchanu, N. O., & Smolii, O. B. (2024). Synthesis and antibiofilm activity of novel 1, 4-dihydropyrido [1, 2-α] pyrrolo [2, 3-d] pyrimidine-2-carboxamides. Biopolymers and Cell, 40(1).

Nandakumar, K., Obika, H., Utsumi, A., Ooje T., & Yano, T. (2004). In vitro laser ablation of natural marine biofilms. Applied Environmental Microbiology, 70, 6905-6908.

Nichols, C. A. M., Garon, S., Bowman, J. P., Raguenes, G., & Guezennec, J. (2004). Production of exopolysaccharides by Antarctic marine bacterial isolates. Journal of Applied Microbiology, 96, 1057–1066.

Nurioglu, A. G., Esteves, A. C., & de With, G. (2015). Non-toxic, non-biocide-release antifouling coatings based on molecular structure design for marine applications. Journal of Materials Chemistry B, 3(32), 6547–6570. https://doi.org/10.1039/c5tb00232j

Omae, I. (2003). Organotin antifouling paints and their alternatives. Applied Organometallic Chemistry, 17(2), 81–105. https://doi.org/10.1002/aoc.396

Omuzbuken, B., Kacar, A., Avunduk, S. & Erden Pazi, İ. (2022). Screening of beta-glucosidase inhibitors and their chemical Profiles from marine sediment bacteria. Thalassas: An International Journal of Marine Sciences, 38, 1057-1065. https://doi.org/10.1007/s41208-022-00451-3

Patel, R. K., Patel, J. B. & Trivedi, P. D. (2015). Spectrophotometric method for the estimation of total alkaloids in the Tinospora cordifolia M. and its herbal formulations. Interational Journal of Pharmacy and Pharmaceutical Sciences, 7(10):249–251.

Patil, J. S., & Anil, A. C. (2005). Influence of diatom exopolymers and biofilms on metamorphosis in the barnacle Balanus amphitrite. Marine Ecology Progress Series, 301, 231–245. https://doi.org/10.3354/meps301231

Patra, A., Das, J., Agrawal, N. R., Kushwaha, G. S., Ghosh, M., & Son, Y. O. (2022). Marine antimicrobial peptides-based strategies for tackling bacterial biofilm and biofouling challenges. Molecules, 27(21), 7546. https://doi.org/10.3390/molecules27217546

Peters, L., Konig, G. M., Wright, A. D., Pukall, R., Stackebrandt, E., Eberl, L. & Riedel, K. (2003). Secondary metabolites of Flustra foliacea and their influence on bacteria. Applied and Environmental Microbiology, 69(6), 3469–3475. https://doi.org/10.1128/AEM.69.6.3469-3475.2003

Pinu, F. R. & Villas-Boas, S. G. (2017). Extracellular microbial metabolomics, the state of the art. Metabolites, 73, 43. https://doi.org/10.3390/metabo7030043

Qian, P. Y., Xu, Y., & Fusetani, N. (2009). Natural products as antifouling compounds: recent progress and future perspectives. Biofouling, 26(2), 223–234. https://doi.org/10.1080/08927010903470815

Rodrigues, T., Reker D., Schneider P. & Schneider G. (2016). Counting on natural products for drug design. Nature Chemistry, 8, 531–541. https://doi.org/10.1038/NCHEM.2479

Rohaeti, E., Fauzi, M. R. & Batubara, I. (2017). Inhibition of α-glucosidase, total phenolic content and flavonoid content on skin fruit and flesh extracts of some varieties of snake fruits. IOP Conf. Series: Earth and Environmental Science, 58, 012066. https://doi.org/10.1088/1755-1315/58/1/012066

Sanchez-Rodríguez, D. E., Ortiz-Aguirre, I., Aguila-Ramírez, R. N., Rico-Virgen, E. G., Gonzalez-Acosta, B. & Hellio, C. (2018). Marine bacteria from the Gulf of California with antimicrofouling activity against colonizing bacteria and microalgae. Revista de Biología Tropical, 664, 1649–1663. https://doi.org/10.15517/rbt.v66i4.31963f

Santhi, L. S., Talluri, V. S. S. L. P., Nagendra, S. Y. & Krishna, E. (2017). Bioactive compounds from marine sponge associates: antibiotics from Bacillus sp., Natural Product Chemistry Research, 5, 4.

Satheesh, S., Ba-akdah, M. A. & Al-Sofyani, A. A. (2016). Natural antifouling compound production by microbes associated with marine macroorganisms, A review. Electronic Journal of Biotechnology, 19(3), 26–35. https://dx.doi.org/10.1016/j.ejbt.02.002

Shamsa, F., Monsef, H., Ghamooshi, R. & Verdianrizi, M. (2008). Spectrophotometric determination of total alkaloids in some Iranian medicinal plant. ThaiScience Journal of Pharmaceutical Sciences, 32, 17–20.

Sjögren, M., Göransson, U., Johnson, A. L., Dahlström, M., Andersson, R., Bergman, J., Jonsson, P. R. & Bohlin, L., (2004). Antifouling activity of brominated cyclopeptides from the marine sponge Geodia barretti. Journal of Natural Products, 67(3), 368–372. https://doi.org/10.1021/np0302403

Viju, N., Punitha, S. M. J. & Satheesh, S. (2020). Antibiofilm activity of endophytic Bacillus species associated with marine gastropods. Annals of Microbiology, 701, 1–12. https://doi.org/10.1186/s13213-020-01554-z

Wang, K. L., Wu, Z. H., Wang, Y., Hao, Y. Y., & Wang, Y. (2017). Mini-review: antifouling natural products from marine microorganisms and their synthetic analogs. Marine Drugs, 15(9), 266. https://doi.org/10.3390/md15090266

Vimala, R., (2016). Marine organisms: a potential source of natural antifouling metabolites. International Journal of ChemTech Research, 9, 208–217.

Wibowo, J. T., Bayu, A., Aryati, W. D., Fernandes, C., Yanuar, A., Kijjoa, A., & Putra, M. Y. (2023). Secondary Metabolites from Marine-Derived Bacteria with Antibiotic and Antibiofilm Activities against Drug-Resistant Pathogens. Marine Drugs, 21(1), 50. https://doi.org/10.3390/md21010050

Wibowo, J. T., Ahmadi, P., Rahmawati, S. I., Bayu, A., Putra, M. Y. & Kijjoa, A. (2022). Marine-derived indole alkaloids and their biological and pharmacological activities. Marine Drugs, 20, 3. https://doi.org/10.3390/md20010003

World Health Organization (WHO). (2015). Antimicrobial Resistance. Available online: http://www.who.int (accessed on 23 February 2019).

Zeng, W., Li, F., Wu, C., Yu, R., Wu, X., Shen, L., Yuandong, L., Guanzhou, Q. & Li, J. (2020). Role of extracellular polymeric substance (EPS) in toxicity response of soil bacteria Bacillus sp. S3 to multiple heavy metals. Bioprocess and Biosystems Engineering, 43(1), 153–167. https://doi.org/10.1007/s00449-019-02213-7

Downloads

Published

2025-04-29

How to Cite

Kazan, A., Kacar, A., & Omuzbuken, B. (2025). Antibiofilm Activity and Chemical Profiling of Biomolecule Extracts from Marine Sediment Bacteria. Sustainable Aquatic Research, 4(1), 51–65. https://doi.org/10.5281/zenodo.15255183

Issue

Section

Original Articles