Effects of Agricultural Carbon Sources On Water Quality and Phytoplankton Community Composition in Flocponic System

Authors

  • Kenneth Rono Department of Fisheries and Aquatic Science , School of Environmental Sciences, University of Eldoret , Eldoret, P.O BOX 1125-30100, Kenya https://orcid.org/0009-0002-3793-8548
  • Geraldine Matolla Department of Fisheries and Aquatic Science , School of Environmental Sciences, University of Eldoret , Eldoret, P.O BOX 1125-30100, Kenya https://orcid.org/0000-0002-4961-9811
  • Manyala Julius Department of Natural resource, School of Special Planning and Natural Resource Management, Jaramogi Oginga Odinga University of Science and Technology, Bondo, P.O BOX 210-40601, Kenya https://orcid.org/0000-0003-0248-6377
  • Frank Onderi Department of Fisheries and Aquatic Science , School of Environmental Sciences, University of Eldoret , Eldoret, P.O BOX 1125-30100, Kenya https://orcid.org/0000-0002-5912-5049

DOI:

https://doi.org/10.5281/zenodo.15255365

Keywords:

Flocponic, Agricultural carbon sources, Phytoplankton, Water quality

Abstract

Carbon products promote aggregate floc-rich plankton, with diverse roles in flocponic production. Availability, low-cost, and chemical composition of agricultural by-products make them ideal substrates for phytoplankton production. Phytoplankton maintains water quality by reducing toxic substances, but it is problematic under some conditions. Therefore, the study evaluates how agricultural carbon sources affect flocponic phytoplankton community composition and water quality. Five treatments (wheat-bran, Rhodes-hay, maize-cob, maize-stables, and lucerne-hay) and a control (no by-product) were employed in a complete randomized design, each in triplicate for nine weeks. Each treatment and control had Nile tilapia (0.155 ± 0.01 g) and rice (seeds) densities of 98 m-3 and 250 m-2, respectively. Temperature, pH, dissolved oxygen, and salinity levels did not differ significantly between treatments and control. However, TDS, soluble reactive phosphorus (SRP), ammonia, nitrite, and nitrate showed significant differences (p<0.05) between treatments and control. Lucerne-hay exhibited the highest nitrate levels (0.9 ± 0.06 mg L-1), SRP (0.6 ± 0.05 mg L-1), and the lowest ammonia and nitrite levels compared to other treatments and control. Lucerne-hay had the highest phytoplankton diversity (2.48), while the control (1.37) had the least. Further, there were significant differences in phytoplankton abundance, with lucerne-hay having the highest Charophyta (1.45 ± 0.02 indsL-1), Chlorophyta (1.60 ± 0.02 indsL-1), and Ochrophyta (1.64 ± 0.03 indsL-1) abundance, while the control had the least. The result of the study revealed that carbon sources influence flocponic water quality and phytoplankton. The composition and solubility of lucerne-hay and wheat-bran may have improved water quality and phytoplankton. The study suggests that lucerne-hay and wheat-bran are the best flocponic carbon sources for phytoplankton and water quality.

References

Ahmad, H. I., Verma, A. K., Babitha, R. A. M., Rathore, G., Saharan, N., & Gora, A. H. (2016). Growth, non-specific immunity and disease resistance of Labeo rohita against Aeromonas hydrophila in biofloc systems using different carbon sources. Aquaculture, 457, 61–67. https://doi.org/10.1016/j.aquaculture.2016.02.011

AOAC, (1998). Official Method of Analysis. 15th Edition, Association of Official Analytical Chemists, Washington DC. https://www.bing.com/ck/a

APHA (American Public Health Association), (1989). Standard methods for the examination of water and wastewater. 17 thed. APHA, AWWA (American Water Works Association) and WPCF (Water Pollution Control Federation).

Avnimelech, Y. (2009). Biofloc Technology - A Practical Guidebook. The World Aquaculture Society; Technology.html

Avnimelech, Y. (2015). Biofloc Technology a Practical Guide Book, 3rd Ed. The World Aquaculture Society.

Azim, M. E., & Little, D. C. (2008). The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture, 283 (1): 29–35. http://dx.doi.org/10.1016/j.aquaculture.2008.06.036

Badiola, M., Basurko, O. C., Piedrahita, R., Hundley, P., & Mendiola, D. (2018). Energy use in Recirculating Aquaculture Systems (RAS): A review. Aquaculture Engineering, 81:57-70. https://doi.org/10.1016/j.aquaeng.2018.03.003

Bakhshi, F., Najdegerami, E. H., Manaffar, R., Tukmechi, A., & Farah, K. R. (2018). Use of different carbon sources for the biofloc system during the grow-out culture of common carp (Cyprinus carpio L.) fingerlings. Aquaculture, 484, 259–267. https://doi.org/10.1016/J.AQUACULTURE.2017.11.036

Bohnes, F. A., Hauschild, M. Z., Schlundt, J., & Laurent, A. (2019). Life cycle assessments of aquaculture systems: a critical review of reported findings with recommendations for policy and system development. Reviews in Aquaculture, 11(4):1061-1079. https://doi.org/10.1111/raq.12280

Boyd, C. E., Abramo, L. R. D., & Glencross, B. D. (2020). Achieving sustainable aquaculture: Historical and current perspectives and future needs and challenges. Journal of World Aquaculture Society,51 (3):578-633. https://doi.org/10.1111/jwas.12714

Brunno, S. C., & Kevin, F. (2016). Use of Bacillus spp. to enhance phosphorus availability and serve as a plant growth promoter in aquaponics systems. Scientia Horticulture, 211 (2016) 277–282. http://dx.doi.org/10.1016/j.scienta.2016.09.005

Butz, I., & Vens-Cappell, B. (1982). Organic load from the metabolic products of rainbow trout fed with dry feed. In Albaster, J. S. (ed.), Report of the EIFAC Workshop on Fish Farm Effluents. Silkeborg, Denmark, 26–28 May 1981. EIFAC Tech. Pap. 41, 57–7.

Cao, L., Wang, W., Yang, Y., Yang, C., Yuan, Z., Xiong, S., & Diana, J. (2007). Environmental impact of aquaculture and countermeasures to aquaculture pollution in China. Environmental Science and Pollution Research, 14(7): 452-462. https://doi.org/10.1065/espr2007.05.426

Castro-Mejía, G., De Lara Andrade, R., Monroy-Dosta, M. C., Maya-Gutiérrez, S., Castro-Mejía, J., & Jiménez-Pacheco, F. (2017). Presence and abundance of phytoplankton and zooplankton in a Biofloc production system using two carbon sources: 1) Molasses and 2) Molasses + rice powder, culturing Oreochromis niloticus. Digital Journal of El Hombre y su Ambiente Department: 2007-5782,1 (13): 33-42.

Correia, E., Wilkenfeld, J., Morris, T., Weic, L., Prangnell, D., & Samocha, T. (2014). Intensive nursery production of the Pacific white shrimp Litopenaeus vannamei using two commercial feeds with high and low protein content in a biofloc-dominated system. Aquacultural Engineering, 59: 48–54. http://dx.doi.org/10.1016/j.aquaeng.2014.02.002

Crab, R., Defoirdt, T., Bossier, P., & Verstraete, W. (2012). Biofloc technology in aquaculture: Beneficial effects and future challenges. Aquaculture, 356, 351–356. https://doi.org/10.1016/j.aquaculture.2012.04.046

Dauda, A. B. (2019). Biofloc technology: a review on the microbial interactions, operational parameters and implications to disease and health management of cultured aquatic animals. Reviews in Aquaculture, 1–18.

https://doi.org/10.1111/raq.12379

Dauda, A. B., Romano, N., Ebrahimi, M., Karim, M., Natrach, I., & Kamarudin, M. S. (2017). Different carbon sources affect biofloc volume, water quality, and the survival and physiology of African catfish Clarias garipeinus fingerlings reared in an intensive biofloc technology system. Fisheries Science, 83, 1037–1048. https://doi.org/10.1007/s12562-017-1144-7

De Schryver, P., Crab, R., Defoirdt, T., Boon, N., & Verstraete, W. (2008). The basics of bioflocs technology: The added value for aquaculture. Aquaculture, 277:125–137. https://doi.org/10.1016/j.aquaculture.2008.02.019

Deng, M., Chen, J., Gou, J., Hou, J., Li, D., & He, X. (2018). The effect of different carbon sources on water quality, microbial community, and structure of biofloc systems. Aquaculture, 482: 103–110. https://doi.org/10.1016/J.AQUACULTURE.2017.09.030

Deswati, S., Isara, L. P., & Pardi, H. (2021). Hydroton-biofloc-based aquaponics (hydroton-flocponics): towards good water quality and macro-micro nutrient. AACL Bioflux, 14(5):3127-3144.

Duguma, B., Getachew, E., Tessema, Z., & Adugna, T. (2014). Comparison of Nutritive Value of Alfalfa, Rhodes Hay, Cynodon Pasture and Linseed Cake –Maize Mixture at Hawassa College of Agriculture, Ethiopia. Academic Journal of Nutrition, 3 (2): 19-21. https://doi.org/10.5829/idosi.ajn.2014.3.2.85245

Ebeling, J. M., Timmons, M. B., & Bisogni, J. J. (2006). Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture, 257, 346–358. http://dx.doi.org/10.1016/j.aquaculture.2006.03.019

El-Sayed, A. F. M. (2021). Use of biofloc technology in shrimp aquaculture: A comprehensive review, with emphasis on the last decade. Reviews in Aquaculture, 13, 676–705. https://doi.org/10.1111/raq.12494

Emerenciano, M. G. C., Martínez-Córdova, L. R., Martínez-Porchas, M., & Miranda-Baeza, A. (2017). Biofloc Technology Technology (BFT): Tool for Water Quality Management in Aquaculture. In: Tutu H, ed. Water Quality. London: INTECH; 91–109. https://doi.org/10.5772/66416

Emerenciano, M., Ballester, E. L. C., Cavalli, R. O., & Wasielesky, W. (2012). Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquaculture Research, 43: 447–457. https://doi.org/10.1111/J.1365-2109.2011.02848.X

Emerenciano, M., Cuzon, G., Arévalo, M., & Gaxiola, G. (2013). Biofloc technology in intensive broodstock farming of the pink shrimp Farfantepenaeus duorarum: spawning performance, biochemical composition and fatty acid profile of eggs. Aquaculture Research, 1–14, 4, http://dx.doi.org/10.1111/are.12117

Engle, C. R., Kumar, G., & van Senten, J. (2020). Cost drivers and profitability of U.S pond, raceway, and RAS aquaculture. Journal of the World Aquaculture Society, 1–27. http://dx.doi.org/10.1111/jwas.12706

FAO. The State of World Fisheries and Aquaculture (2020). Food and Agriculture Organization of The United Nations (FAO); https://doi.org/10.4060/ca9229en

Farmaki, E. G., Thomaidis, N. S., Pasia, I. N., Baulard, C., Papaharisis, L., & Efstathiou, C. E. (2014). Environmental impact of intensive aquaculture: Investigation on the accumulation of metals and nutrients in marine sediments of Greece. Science of the Total Environment, 485-486: 554-562. https://doi.org/10.1016/j.scitotenv.2014.03.125

Forster, J., & Slaski, R. (2010). Lessons from unsuccessful farms. In: Chadwick, E.M.P., Parsons, G. J., Sayavong, B. (Eds.), Evaluation of Closed-Containment Technologies for Saltwater Salmon Aquaculture. NRC Research Press, Ottawa, p. 21.

Green, B. W., Schrade, K. K., & Perschbacher, P. W. (2014). Effect of stocking biomass on solids, phytoplankton communities, common off-flavors, and production parameters in a channel catfish biofloc technology production system. Aquaculture Research, 45: 1442-1458. https://doi.org/10.1111/are.12096

Haney, J. F., Richard, S. S., & James, M. (2013). "An-Image-based Key to the Zooplankton of North America" version 5.0 released 2013. University of New Hampshire Center for Freshwater Biology 25 Jan 2024

Hassan, S. A. H., Sharawy, Z. Z., El Nahas, A. F., Hemeda, S. A., El-Haroun, E., & Abbas, E. M. (2022). Carbon sources improve water quality, microbial community, immune-related and antioxidant genes expression and survival of challenged Litopenaeus vannamei Post larvae in biofloc system. Aquaculture Research, 53, 5902–5914. https://doi.org/10.1111/are.16058

Henares, M. N. P., Medeiros, M. V., & Camargo, A. F. M. (2020). Overview of strategies that contribute to the environmental sustainability of pond aquaculture: rearing systems, residue treatment, and environmental assessment tools. Review Aquaculture, 2020; 12 (1):453-470. https://doi.org/10.1111/raq.12327

Hostins, B., Braga, A., Lopes, D., Wasielesky, W., & Poersch, L. (2015). Effect of temperature on nursery and compensatory growth of pink shrimp Farfantepenaeus brasiliensis reared in a superintensive biofloc system. Aquacultural Engineering, 66: 62–67. https://doi.org/10.1016/J.AQUAENG.2015.03.002

Janse, V. V. S., Taylor, J., Gerber, A., & Van, G. C. (2006). Easy identification of the most common freshwater algae. A guide for the identification of microscopic algae in South African Freshwaters. ISBN 0-621-3547 1-6

Khanjani, M. H., Alizadeh, M., & Sharifinia, M. (2021). Effects of different carbon sources on water quality, biofloc quality, and growth performance of Nile tilapia (Oreochromis niloticus) fingerlings in a heterotrophic culture system. Aquaculture International, 29: 307–321. https://link.springer.com/article/10.1007/s10499-020-00627-9

Khanjani, M. H., & Sharifinia, M. (2020). Biofloc technology is a promising tool to improve aquaculture production. Reviews in Aquaculture, 12, 1836–1850. http://dx.doi.org/10.1111/raq.12412

Khanjani, M. H., Sajjadi, M. M., Alizadeh, M., & Sourinejad, I. (2017). Nursery performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) cultivated in a biofloc system: the effect of adding different carbon sources. Aquaculture Research, 48, 1491–1501. https://doi.org/10.1111/ARE.12985

Kibria, G., Nugegoda, D., Fairclough, R. & Lam, P. (1997). The nutrient content and the release of nutrients from fish food and feces. Hydrobiologia. 357, 165–171. https://doi.org/10.1023/A%3A1003147122847

Kong, W., Suiliang, H., Zhenjiang, Y., Feifei, S., Yibei, F., & Zobia, K. (2020). Fish Feed Quality Is a Key Factor in Impacting Aquaculture Water Environment: Evidence from Incubator Experiments. Scientific Reports, 10:187, https://doi.org/10.1038/s41598-019-57063w

Kuhn, D. D., Lawrence, A. L., Boardman, G. D., Patnaik, S., Marsh, L., & Flick, G. J. (2010). Evaluation of two types of bioflocs derived from biological treatment of fish effluent as feed ingredients for Pacific white shrimp, Litopenaeus vannamei. Aquaculture, 303:28–33. https://doi.org/10.1016/j.aquaculture.2010.03.001

Lucia, H. S., Silva, Vera, L. M., Huszar, M. M., Marinhoc, L. M., Rangel, J. B., Carolina, D. D., Christina, C. B., & Fábio, R. (2014). Drivers of phytoplankton, bacterioplankton, and zooplankton carbon biomass in tropical hydroelectric reservoirs. Limnologica, 48, 1–10. http://dx.doi.org/10.1016/j.limno.2014.04.004

Maica, P. F., Borba, M. R. M., & Wasieleshy, W. (2011). Effect of low salinity on microbial floc composition and performance of Litopenaeus vannamei (Boone) juveniles reared in a zero-water-exchange super-intensive system. Aquacultural Research, 1–10, http://dx.doi.org/10.1111/j.1365-2109.2011.02838.x

Mallasen, M., & Valenti, W. C. (2006). Effect of nitrite on larval development of giant river prawn Macrobrachium rosenbergii. Aquaculture, 261(4). https://doi.org/10.1016/j.aquaculture.2006.07.048

Mansour, A. T., Ashry, O. A., Ashour, M., Alsaqufi, A. S., Ramadan, K. M. A., & Sharawy, Z. Z. (2022). The optimization of dietary protein level and carbon sources on biofloc nutritive values, bacterial abundance, and growth performances of white leg shrimp (Litopenaeus vannamei) juveniles. Lifestyles, 12(6), 888. https://doi.org/10.3390/life12060888

Masser, M. P. (2012). Cage Culture in Freshwater and Protected Marine Areas. In: Tidwell JH, ed. Aquaculture Production Systems. Wiley-Blackwell; 119-134. https://doi.org/10.1002/97811 18250 105.ch6

Middelburg, J. J., & Nieuwenhuize, J. (2000). Nitrogen uptake by heterotrophic bacteria and phytoplankton in the nitrate-rich Thames estuary. Marine Ecology Progress Series, 203, 13–21. https://doi.org/10.3354/meps203013

Monroy-Dosta, M. C., Lara-Andrade, R., Castro-Mejía, J., Castro-Mejía, G., & Emerenciano, M. (2013). Composición y abundancia de comunidades microbianas asociados al biofloc en un cultivo de tilapia. Review in Biology Marine Oceanography, 48 (3), 1–11, http://dx.doi.org/10.4067/S0718-19572013000300009

Naik, M. K., & Reddy, M. S. (2020). Effect of biofloc system on growth performance in shrimp Litopenaeus vannamei under different C: N ratios with sugarcane molasses. International Journal of Scientific and Engineering Research, 11(5), 243–262. http://www.ijser.org/

Nuraina, A., Arif, M., Endang, H., & Samuel, K. (2020). The correlation between plankton abundance and water quality in Donan River. Omni-Akuatika Special Issue 3rd Kripik SCiFiMaS 14-20. http://dx.doi.org/10.20884/1.oa.2020.16.3.844

Pérez-Rostro, C., Pérez-Fuentes, J., & Hernández-Vergara, M. (2014). Biofloc, a technical alternative for culturing Malaysian prawn Macrobrachium rosenbergii. In Sustainable aquaculture techniques (pp. 267–283). INTECH. https://doi.org/10.5772/57501

Pinho, S. M., David, L. H. C., Goddek, S., Emerenciano, M. G. C., & Portella, M. C. (2021). Integrated production of Nile tilapia juveniles and lettuce using biofloc technology. Aquaculture International, 29(1):37-56. https://doi.org/10.1007/s10499-020-00608–y

Pinho, S. M., Diego, M. G. L. M., & Kevin, M. F, C. E. (2017). Effluent from a biofloc technology (BFT) tilapia culture on the aquaponics production of different lettuce varieties. Ecological Engineering, 103 (2017) 146–153. https://doi.org/10.1016/j.ecoleng.2017.03.009

Pretty, J., Sutherland, W. J., & Ashby, J. (2010). The top 100 questions of importance to the future of global agriculture. International Journal Agricultural Sustainability8 (4):219-236. https://doi.org/10.3763/ijas.2010.0534

Pruter, J., Strauch, S. M., Wenzel, L. C., Klysubun, W., Palm, H. W., & Leinweber, P. (2020). Organic matter composition and phosphorus speciation of solid waste from an African catfish recirculating aquaculture system. Agriculture, 10(466). https://doi.org/10.3390/agriculture10100466

Rajkumar, M., Pandey, P. K., Aravind, R., Vennila, A., Bharti, V., & Purushothaman, C. S. (2016). Effect of different biofloc systems on water quality, biofloc composition, and growth performance in Litopenaeus vannamei (Boone, 1931). Aquaculture Research, 47, 3432–3444. https://doi.org/10.1111/ARE.12792

Reid, G. K., Lefebvre, S., & Filgueira, R. (2020). Performance measures and models for open-water integrated multi-trophic aquaculture. Review in Aquaculture, 12(1):47-75. https://doi.org/10.1111/raq.12304

Roy, L. A., Davis, D. A., Saoud, I. P., Boyd, C. A., Pine, H. J., & Boyd, C. E. (2010). Shrimp culture in inland low salinity waters. Reviews in Aquaculture, 2(4), 191–208. https://doi.org/10.1111/j.1753-5131.2010.01036.x

Ruzzi, M., & Aroca, R. (2015). Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Science in Horticulture, (Amsterdam) 196, 124–134, http://dx.doi.org/10.1016/j.scienta.2015.08.042

Samocha, T. M. (2019). Sustainable Biofloc Systems for Marine Shrimp. Environmental Science, Biology. https://doi.org/10.1016/C2018-0-02628-6

Schmittou, H., & Rosati, R. (1991). Cage culture: a method of fish production in Indonesia. FRDP, Central Research Institute Fisheries, Jakarta. P 114.

Sharawy, Z. Z., Abbas, E. M., Abdelkhalek, N. K., Ashry, O. A., Abd El-Fattah, L. S., El-Sawy, M. A., Helal, M. F., & El-Haroun, E. (2022). Effect of organic carbon source and stocking densities on growth indices, water microflora, and immune-related genes expression of Litopenaeus vannamei larvae in intensive culture. Aquaculture, 546, 737397. https://doi.org/10.1016/j.aquaculture.2021.737397

Soaudy, M. R. M., Osman, M. F., Ashraf, S. M., & Osama, M. E. (2018). Effect of different carbon sources on biofloc composition and tilapia (Oreochromis niloticus) growth performance (Doctoral dissertation, Cairo University). http://dx.doi.org/10.13140/RG.2.2.16077.90088.

Soedibya, P. H. T., Listiowati, E. & Pramono, T. B. (2022). Phytoplankton diversity and abundance in biofloc cultivation of African catfish with different stock density. Depik Jurnal Ilmu-Ilmu Perairan, Pesisir dan Perikanan, 11(1): 85-90. http://jurnal.unsyiah.ac.id/depik/article/viewFile/24098/pdf

Soliman, A. M. I., & Mohsen, A. T. (2022). Effects of different carbon sources on water quality, biofloc quality, and the productivity of Nile tilapia reared in biofloc-based ponds. Annals Animal Science22, (4)(2022) 1281–1289. https://doi.org/10.2478/aoas-2022-0025

Strauch, S. M., J. Bahr, B., Basmann, A. A., Bischoff, M., Oster, B., Wasenitz, H., & Palm, W. (2019). Effects of ortho-phosphate on growth performance, welfare and product quality of juvenile African catfish (Clarias gariepinus). Agricultural and Food Sciences, Environmental Science, 4(1): 1-3. https://doi.org/10.3390/FISHES4010003

Sugiura, S. H., Marchant, D. D., Kelsey, K., Wiggins, T., & Ferraris, R. P. (2006). Effluent profile of commercially used low-phosphorus fish feeds. Environmental Pollution, 140(1), 95–101. https://doi.org/10.1016/j.envpol.2005.06.020

Sumitro, (2021). Production performance and nitrogen and phosphorus mass balance in biofloc-based African catfish intensive culture at different densities. Jurnal Akuakultur Indonesia, 20(1): 82-92. http://dx.doi.org/10.19027/jai.20.1.82-92

Thilsted, S. H., Thorne-Lyman, A., & Webb, P. (2016). Sustaining healthy diets: The role of capture fisheries and aquaculture for improving nutrition in the post-2015 era. Food Policy, 61:126-131. https://doi.org/10.1016/j.foodpol.2016.02.005

Thompson, S. K. (2002). On sampling and experiments. International Environ-metrics Society an Association of the International Statistical Institute.

Tucker, C., Hargreaves, J., & Tidwell, J. H. (2012). Aquaculture Production Systems. Wiley-Blackwell; 191-244. https://doi.org/10.1002/9781118250105

UN. World Population (2019). Prospects. https://population.un.org/wpp/

Walker, D. A. U., Morales-Suazo, M. C., & Emerenciano, M. G. C. (2020). Biofloc technology: principles focused on potential species and the case study of Chilean river shrimp Cryphiops caementarius. Reviews in Aquaculture, 12(3):1759-1782. https://doi.org/10.1111/raq.12408

Wasielsky, J., Atwood, H., Stokes, A., & Browdy, C. (2006). Effect of natural production in a zero-exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture, 258:396–403. https://doi.org/10.1016/j.aquaculture.2006.04.030

Xu, W. J., Morris, T. C., & Samocha, T. M. (2016). Effects of C/N ratio on biofloc development, water quality, and performance of Litopenaeus vannamei juveniles in a biofloc-based, high-density, zero-exchange, outdoor tank system. Aquaculture, 453, 169–175. https://doi.org/10.1016/J.AQUACULTURE.2015.11.021

Xue, Y., Li, L., Dong, S., Gao, Q., & Tian, X. (2021). The Effects of Different Carbon Sources on the Production Environment and Breeding Parameters of Litopenaeus vannamei. Water, 13, 3584. https://doi.org/10.3390/w13243584

Zach, G. (2021). Shannon Diversity Index: Definition & Example. Statistic, simplified.

Zhang, H., Sun, Z. L., Liu, B., Xuan, Y. M., Jiang, M., Pan, Y. S., Zhang, Y. M., Gong, Y. P., Lu, X. P., & Yu, D. S. (2016). Dynamic changes of microbial communities in Litopenaeus vannamei cultures and the effects of environmental factors. Aquaculture, 455, 97–108. https://doi.org/10.1016/j.aquaculture.2016.01.011

Downloads

Published

2025-04-29

How to Cite

Rono, K., Matolla, G., Julius, M., & Onderi, F. (2025). Effects of Agricultural Carbon Sources On Water Quality and Phytoplankton Community Composition in Flocponic System. Sustainable Aquatic Research, 4(1), 66–86. https://doi.org/10.5281/zenodo.15255365

Issue

Section

Original Articles