Integrated multitrophic aquaculture of sandfish (Holothuria scabra) with marine water acclimatized Nile tilapia (Oreochromis niloticus) and oyster (Sacostrea cucullata) for increased production in Kenya

IMTA using earthen pond systems

Authors

  • Esther Magondu epartment of biological sciences, Pwani University P.O. Box 195-80100, Kilifi, Kenya https://orcid.org/0000-0002-8141-5464
  • Jonathan Mbonge Munguti Aquaculture Department, Kenya Marine and Fisheries Research Institute, National Aquaculture Research Development and Training Center P.O. Box 451, Sagana, Kenya. https://orcid.org/0000-0003-4883-4074
  • Bernerd Mulwa Fulanda Department of biological sciences, Pwani University P.O. Box 195-80100, Kilifi, Kenya https://orcid.org/0000-0003-2818-8175
  • Chrisestom Mlewa Mwatete Department of biological sciences, Pwani University P.O. Box 195-80100, Kilifi, Kenya

DOI:

https://doi.org/10.5281/zenodo.11061456

Keywords:

IMTA, monoculture, sea cucumber, oysters, Nile tilapia.

Abstract

This study compared the growth performance, production, and quality of culture environment of integrated multitrophic aquaculture (IMTA) systems with different species combinations in earthen ponds. The experiment was designed to assess the viability of using marine water acclimatized Nile tilapia (Oreochromis niloticus) as the fed component of the IMTA system in combination with sea cucumbers (Holothuria scabra) and Oysters (Sacostrea cucullata) as extractive species. The control (C) experiment and had a monoculture of O. niloticus. Treatment 1 (T1) had a combination of O. niloticus and H. scabra. Treatment 2 (T2) had a combination of O. niloticus, H. scabra and S. cucullata and Treatment 3 (T3) had a combination of O. niloticus and S. cucullata. Stocking was 2 ind./m2, 1.9 ind./m2 and 2.1 ind./m2 for tilapia, sea cucumber and oysters respectively and replicated in all the treatments. During the 150 days culture period, S. cucullata attained weight gain of 23.74 ± 2.6 g and 26.55 ± 0.26 g in T2 and T3 respectively. Weight gain of H. scabra in T1 and T2 was 146.7 ± 6 g and 153.39 ± 2.04 g respectively. The final average body weight (ABW) of the fed species O. niloticus was significantly higher (p < 0.05) in T2 at 218.82 ± 1.55 which had all the three species combinations. The findings of the study show that the IMTA that had a combination of all three species outperformed those that had two species.

Author Biographies

Jonathan Mbonge Munguti, Aquaculture Department, Kenya Marine and Fisheries Research Institute, National Aquaculture Research Development and Training Center P.O. Box 451, Sagana, Kenya.

Aquaculture 

Director Aquauculture at Kenya Marine and Fisheries Research Institute

Bernerd Mulwa Fulanda, Department of biological sciences, Pwani University P.O. Box 195-80100, Kilifi, Kenya

School of biological sciences

Dean

References

APHA. (2005). Standard Methods for the Examination of water and wastewater, 21st ed. American Public Health Association, Washington, D.C., USA.

Barrington, K., Chopin, T., & Robinson, S. (2009). Integrated multi-trophic aquaculture (IMTA) in marine temperature waters. In: Integrated mariculture: a global review (ed. Soto, D.) FAO Fisheries and Aquaculture Technical Paper, 529: 7-46.

Biswas, G., Kumar, P., Ghoshal, T.K., Lailasam, M., De, D., Bera, A., Mandal, B., Sukumaran, K., & Vijayan, K.K. (2020). Integrated Multi-trophic aquaculture (IMTA) outperforms conventional polyculture with respect to environmental remediation, productivity, and economic return in brackish water ponds. Aquaculture 516, 734626. https://doi.org/10.1016/j.aquaculture.2019.734626

Biswas, G., Kumar, P., Kailasam, K., Ghoshal, T.K., Bera, A., & Vijayan, K.K. (2019). Application of integrated multi-trophic aquaculture (IMTA) concept in brackish water eco-system: the first exploratory trial in the Sundarban, India. J. Coast. Res., Special Issue 86, 50–56. https://doi.org/10.2112/SI86-007.1

Biswas, G., Ananda Raja, R., De, D., Sundaray, J.K, Ghoshal, T.K., Anand, S., Kumar, S., Panigrahi, A., Thirunavukkarasu, A.R., & Ponniah, A.G. (2012). Evaluation of productions and economic returns from two brackish water polyculture systems in tide-fed ponds. Journal of Applied Ichthyology, 28 (1), 116-122. https://doi.org/10.1111/j.1439-0426.2011.01909.x

Bwanika, G., Makanga, B., Kizito, Y., Chapman, L.J., & Balirwa, J. (2004). Observations on the biology of Nile tilapia, Oreochromis niloticus L., in two Ugandan crater lakes. African Journal of Ecology. 42: p. 93-101. https://doi.org/10.1111/j.1365-2028.2004.00468.x

Biao, X., & Kaijin, Y. (2007). Shrimp farming in China: operating characteristics, environmental impact, and perspectives. Ocean and Coastal Management 50: 538–550. https://doi.org/10.1016/j.ocecoaman.2007.02.006

Cao, L., Wang, W., Yang, Y., Yang, C., Yuan, Z., & Xiong, S. et al. (2007). Environmental impact of aquaculture and countermeasures to aquaculture pollution in China. Environmental Science and Pollution Research 14: 452–462. https://doi.org/10.1065/espr2007.05.426

Chang, Z., Neori, A., He, Y., Li, J., Qiao, L., Pretson, S.I, Liu, P., & Li, J. (2020). Development and current state of seawater shrimp farming with emphasis on Integrated Multitrophic pond aquaculture farms, in China-a review. Reviews in Aquaculture, 1-15. https://doi.org 10.1111/raq.12457.

Chen J. (2004). Present status and prospects of sea cucumber industry in China. p. 25–38. In: Lovatelli A., Conand C., Purcell S., Uthicke S., Hamel J.F. and Mercier A. (eds). Advances in sea cucumber aquaculture and management. Fisheries Technical Paper No. 463. Rome: Food and Agriculture Organization of the United Nations.

Chopin, T. (2013). Aquaculture, Integrated Multi-trophic Aquaculture (IMTA). http://www.springerreference.com/index/chapterdbid/226358©Springer-Verlag Berlin Heidelberg 2013.

Cunha, M.E., Quental-Ferreira, H., Parejo, A., Gamito, S., Ribeiro, L., Moreira, M., Monteiro, I., Soares, F., & Pousao-Ferreira, P. (2019). Understanding the individual role of fish, oyster, phytoplankton, and macro algae in the ecology of integrated production in earthen ponds. Aquaculture 512 (2019) 734297. https://doi.org/10.1016/j.aquaculture.2019.734297

Cubillo, A.M., Ferreira, J.G., Robinson, S.M.C., Pearce, C.M., Corner, R.A., & Johansen, J. (2016). Role of deposit feeders in integrated multi-trophic aquaculture — a model analysis. Aquaculture 453, 54–66. https://doi.org/10.1016/j.aquaculture.2015.11.031

Comeau, L.A. (2013). Suspended versus bottom oyster culture in eastern Canada: comparing stocking densities and clearance rates. Aquaculture. 2013:410–411. 57–65. https://doi.org/10.1016/j.aquaculture.2013.06.017

Dong, X., Linlan, L.V., Zhao, W., Yu, Y., & Liu, Q. (2018). Optimization of integrated multi-trophic aquaculture systems for the giant freshwater prawn Macrobrachium rosenbergii Aquaculture Environmental Interaction 10: 547-556. https://doi.org/10.3354/aei00287

FAO. (2020). The State of World Fisheries and Aquaculture (2020). Sustainability in action. Rome. FAO https://doi.org/10.4060/ca9229en.

Fantini-Hong, L., Hanson, T., Kubitza, F., Povh, J. A., Alberto, R., Filho, C.C., & Chappell, J. (2022). Growth performance and economic analysis of hybrid Catfish (Channel Catfish Ictalurus punctatus ♀ × Blue Catfish, I. furcatus ♂) and Channel Catfish (I. punctatus) produced in floating In-Pond Raceway System. Aquaculture Reports, Vol 23, 101065. https://doi.org/10.1016/j.aqrep.2022.101065

Funge-Smith, S.J. & Briggs, M. R. (1998). Nutrient budgets in intensive shrimp ponds: Implications for sustainability. Aquaculture. 164 (1-4): p. 117-133. http://dx.doi.org/10.1016/S0044-8486(98)00181-1

Getachew, T. & Fernando, C. (1989). The food habits of an herbivorous fish (Oreochromis niloticus Linn.) in Lake Awasa, Ethiopia. Hydrobiologia. 174(3): p. 195-200.

Hasan, M.R., & Soto, S. (2017) Improving Feed Conversion Ratio and its Impact on Reducing

Greenhouse Gas Emissions in Aquaculture. FAO Non-Serial Publication, Rome, FAO, pp. 33. http://www.fao.org/3/a-i7688e

Higgins, C.B., Stephenson, K., & Brown, B.L. (2011). Nutrient bio-assimilation capacity of aqua cultured oysters: Quantification pf an Ecosystem Service. Journal of Environmental quality volume 40: 271-277 https://doi.org10.2134/jeq2010.0203.

Hishamunda, N., Ridler, N., & Martone. E. (2014). Policy and governance in aquaculture: Lessons learned and way forward. FAO Fisheries and Aquaculture Technical Paper No. Hickey, J.P. (2009). Carbon sequestration potential of shellfish. Available from: URL. www.thefishsite.com/articles/615/carbon-sequestationpotential-of-shellfish. Accessed 09 August 2019. 577, 68. Rome: FAO. www.fao.org/3/a-i3156e.pdf.

İşgören-Emiroğlu, D., & Günay, D. (2007). The effect of sea cucumber Holothuria tubulosa (G., 1788) on nutrient and organic matter contents of bottom sediment of oligotrophic and hypereutrophic shores. Fresenius Environmental Bulletin, 16(3), 290-294. https:/doi pjbs.2007.586.589

Knowler, D., Chopin, T., Martinez-Espineira, R., Neori, A., Nobre, A., Noce, A., & Reid, G. (2020). The economics of Integrated Multitrophic Aquaculture: where are we now and where do we need to go? Reviews in Aquaculture 12, 1579-1594 doi: 10.1111/raq.12399

Largo, D.B., Diola, A.G., & Marababol, M, S. (2016). Development of an integrated multi-trophic aquaculture (IMTA) system for tropical marine species in Southern cebu, Central Philippines. Aquaculture reports 3 (2016) 67-76. https://doi.org/10.1016/j.aqrep.2015.12.006

Lavitra, T., Rosolofornirina, R., Jangoux, M., & Eeckhaut, I. (2009). Problems related to the farming of Holothuria scabra (Jaeger, 1833). SPC Beche-de-mer Information Bulletin. 29: p. 20-30.

Murphy, A.E., Anderson, I.C., Smyth, A.R., Song, B., & Luckenbach, M.W. (2016). Microbial nitrogen processing in hard clam (Mercenaria mercenaria) aquaculture sediments: the relative importance of denitrification and dissimilatory nitrate reduction to ammonium (DNRA): Nitrogen cycling in clam aquaculture sediment. Limnology and Oceanography 61: 1589–1604. https://doi.org/10.1002/lno.10305

Newell, R.I.E. (1988) Ecological changes in Chesapeake Bay: are they the result of overharvesting the American oyster. In: Crassostrea virginica? Understanding the Estuary: Advances in Chesapeake Bay Research. vol. 129. Chesapeake Research Consortium Publication, pp. 536–54619. https://doi.org/10.1111/raq.12645

Irisarri, J., Fernández-Reiriz, M.J., Labarta, U., Cranford, P.J., & Robinson, S.M.C. (2015). Availability and utilization of waste fish feed by mussels Mytilus edulis in a commercial Integrated multi-trophic aquaculture (IMTA) system: a multi-indicator assessment approach. Ecological Indicators 48, 673–686. https://doi.org/10.1016/j.ecolind. 2014.09.030.

Magondu, E. W., Fulanda, B. M., Munguti, J. M., & Mlewa, C. M. (2021). Towards integration of sea cucumber and cockles with culture of shrimps in earthen ponds in Kenya. Journal of the World Aquaculture Society, 1–15. https://doi.org/10.1111/jwas.12861

Mirera, D.O., & Okemwa, D. (2023). Salinity tolerance of Nile tilapia (Oreochromis niloticus) to seawater and growth response to different feeds. Western Indian Ocean Journal of Marine Sciences. https//doi/10.4314/wiojms.v22i2.6

Mirera, D. O. (2011). Experimental polyculture of milkfish (Chanos chanos) and mullet (Mugil cephalus) using earthen ponds in Kenya. Western Indian Ocean J. Mar. Sci., 10, 59-71.

Neori, A., Chopin, T., Troell, M., Buschmann, A.H., Kraemer, P., Halling, C., Shpigel, M., & Yarish, C. (2004). Integrated aquaculture: rationale, evolution, and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture 231, 361–391. https://doi.org/10.1016/j.aquaculture.2003.11.015.

Purcell, S.W. (2015). Value, market preferences, and trade of beche-de-mer from pacific island sea cucumbers. PLoS One 9 (4), e95075.https://doi.org/10.1371/journal.pone.0095075.

Purcell S.W. & Eeckhaut, I. (2005). An external check for disease and health of hatchery-produced sea cucumbers. SPC Beche-de-mer Information Bulletin 22:34–38.

Purcell, S.W. (2004). Rapid growth and bioturbation activity of the sea cucumber Holothuria scabra in earthen ponds. Proceedings of Australasian Aquaculture 2004, 244.

Pitt, R. & Duy, N.D.Q. (2005) Breeding and rearing of the sea cucumber Holothuria scabra in Viet Nam. FAO Fisheries Technical Paper. p. 333-346.

Ridler, C. B., & Ridler, N. (2011). A potential conflict between economic and environmental sustainability: A case study (pp. 1131–1142). In MIC 2011: managing sustainability? Proceedings of the 12th International Conference, [Selected Papers] Portoroz, University of Primorska, Faculty of Management Koper, 23–26 November 2011.

Ridler, N., Barrington, K., Robinson, B., Wowchuk, M., Chopin, T., Robinson, S., Page, F., Reid, G., Szemerda, M., Sewuster, J., & Boyne-Travis, S. (2007a). Integrated multitrophic aquaculture. Canadian project combines salmon, mussels, kelps. Global Aquaculture Advocate 10, 52–55.

Ridler, N., Wowchuk, M., Robinson, B., Barrington, K., Chopin, T., Robinson, S. et al (2007b). Integrated multi-trophic aquaculture (IMTA): A potential strategic choice for farmers. Aquaculture Economics and Management. 11(1):99-110. https://doi.org/10.1080/13657300701202767

Samocha, T.M., Fricker, J., Ali, A.M., Shpigel, M., & Neori, A. (2015). Growth and nutrient uptake of the macroalga Gracilaria tikvahiae cultured with the shrimp Litopenaeus vannamei in an integrated multi-trophic aquaculture (IMTA) system. Aquaculture 446: 263–271. https://doi.org/10.1016/j.aquaculture.2015.05.008

Shpigel, M.; Ben Ari, T.; Shauli, L.; Odintsov, V., & Ben-Ezra, D. (2016). Nutrient recovery and sludge management in seabream and grey mullet co-culture in Integrated Multi-Trophic Aquaculture (IMTA). Aquaculture, 464, 316-322. https://doi.org/10.1016/j.aquaculture.2016.07.007.

Skriptsova, A.V., & Miroshnikova, N.V. (2011). Laboratory experiment to determine the potential of two macroalgae from the Russian Far-East as biofilters for integrated multi-trophic aquaculture (IMTA). Bio resource Technology. 102, 3149–3154. https://doi.org/10.1016/j.biortech.2010.10.093.

Smyth, A.R., Geraldi, N.R., & Piehler, M.F. (2013). Oyster-mediated benthic-pelagic coupling modifies nitrogen pools and processes. Marine Ecology Progress Series 493: 23–30. https://doi.org/10.3354/meps10516

Samocha, T.M., Fricker, J., Ali, A.M., Shpigel, M., & Neori, A. (2015). Growth and nutrient uptake of the macroalga Gracilaria tikvahiae cultured with the shrimp Litopenaeus vannamei in an Integrated Multi-Trophic Aquaculture (IMTA) system. Aquaculture 446, 263–271. https://doi.org/10.1016/j.aquaculture.2015.05.008

Sara, G, Zenone, A., & Tomasello, A. (2009). Growth of Mytilus galloprovincialis (mollusca, bivalvia) close to fish farms: a case of integrated multi-trophic aquaculture within the Tyrrhenian Sea. Hydrobiologia 636:129-136. https://doi.org 10.1007/s10750-009-9942-2

Sanderson, J., Dring, M., Davidson, K., & Kelly, M., (2012). Culture, yield and bioremediation potential of Palmaria palmata (Linnaeus) Weber and Mohr and Saccharina latissima (Linnaeus) C.E. Lane, C. Mayers, Druehl and G.W. Saunders adjacent to fish farm cages in northwest Scotland. Aquaculture 354–355: 128– 135. https://doi.org/10.1016/j.aquaculture.2012.03.019

Shemer, H., Sagiv, A., Holenberg, M., & Maor, A.Z. (2017). Filtration characteristics of threaded microfiber water filters. Desalination, 431. https://doi.org 10.1016/j.desal.2017.07.009

Shi, H., Zheng, W., Zhang, X., Zhu, M., & Ding, D. (2013). Ecological-economic assessment of monoculture and integrated multi-trophic aquaculture in Sanggou Bay of China. Aquaculture; 410-411, 172–178. doi:10.1016/j.aquaculture.2013.06.033

Tresnati, J., Yasir, I., Syafiuddin., Aprianto, R., Mutmainnah, Yanti, A., Bestari, A.D., & Tuwo, A. (2019). Predators effect on mortality of sandfish Holothuria scabra cultured in multitrophic system. Journal of Physics: Conference Series1341 022026 doi:10.1088/1742-6596/1341/2/022026.

Uthicke S. (2001) Nutrient regeneration by abundant coral reef holothurian. Journal of Exp. Mar. Biol. and Ecol. 265, 153-170. https://doi.org/10.1016/S0022-0981(01)00329-X

Waite, R., Beveridge, M., Brummett, R., Castine, S., Chaiyawannakarn, N., Kaushik, S., Mungkung, R., Nawapakpilai, S., & Phillips, M. (2014). Improving productivity and environmental Performance of Aquaculture. In: Working Paper, Installment 5 of Creating a Sustainable Food Future. World Resources Institute, Washington, DC. http://www.worldresourcesreport.org.

Wang, Y.G., Zhang, C., Rong, X., Chen, J., & Shi C. (2004). Disease of cultured sea cucumber, Apostichopus japonicus, in China. p. 297–310. In: Lovatelli A., Conand C., Purcell S., Uthicke S., Hamel J.F. and Mercier A. (eds). Advances in sea cucumber aquaculture and management. Fisheries Technical Paper No. 463. Rome: Food and Agriculture Organization of the United Nations.

Watanabe, S., Sumbing, J.G., Hazel, M.J., & Ramos, L. (2014). Growth pattern of the tropical sea cucumber Holothuria scabra, under captivity. Japan Agricultural Research Quarterly, Vol 48 (4), 457-464 https://doi.org/10.6090/jarq.48.457

Whitmarsh, D., Cook, E., & Black, K. (2006). Searching for sustainability in aquaculture: an investigation into the economic prospects for an integrated salmon mussel production system. Marine Policy 30(3): 293. https://doi.org/10.1016/j.marpol.2005.01.004

Xilin S. (2004). The progress and prospects of studies on artificial propagation and culture of the sea cucumber, Apostichopus japonicus. p. 273–276. In: Lovatelli A., Conand C., Purcell S., Uthicke S., Hamel J.F. and Mercier A. (eds). Advances in sea cucumber aquaculture and management. Fisheries Technical Paper No. 463. Rome: Food and Agriculture Organization of the United Nations.

Zar, J.H. (1998). Biostatistical Analysis (4th Edition). Prentice Hall, Englewood Clifs, New Jersey, USA.

Downloads

Published

2024-04-30

How to Cite

Magondu, E., Munguti, J. M., Fulanda, B. M., & Mwatete, C. M. (2024). Integrated multitrophic aquaculture of sandfish (Holothuria scabra) with marine water acclimatized Nile tilapia (Oreochromis niloticus) and oyster (Sacostrea cucullata) for increased production in Kenya: IMTA using earthen pond systems. Sustainable Aquatic Research, 3(1), 26–43. https://doi.org/10.5281/zenodo.11061456

Issue

Section

Original Articles